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MODELS WITH APPLICATIONS TO OPTIMAL QUANTILE SELECTION

FOR LOCATION OR SCALE PARAMETER ESTIMATION

Abbreviated Title: Computation of Optimal Designs in Time Series

By

Randall L. Eubank, Patricia L. Smith and Philip W. Smith
Southern Methodist University and Old Dominion University

ABSTRACT

7- Using the results of Chow (1978) on the optimal placement of knots

in the approximation of functions by piecewise polynomials, an algorithm

is presented for the computation of optimal designs for certain time

series models considered by Eubank, Smith and Smith (1981a, 1981b). The

ideas underlying this algorithm form a unified approach to the computa-

tion of optimal spacings for the sample quantiles used in the asymptotically

best linear unbiased estimator of a location or scale parameter.

1. INTRODUCTION

Consider the linear regression model in which a stochastic process,

Y, is observed having the form

Y(t) = Bf(t) + X(t), t E [O,1] , (1.1)

where 8 is an unknown parameter, f is a known regression function and X(.)

is a zero mean process with known covariance kernel, R. The X process is

assumed to admit k-l quadratic mean derivatives at each point t e [0,1].

When the Y process is observed over all of (0,1], the reproducing

kernel Hilbert space (RKHS) techniques developed by Parzen (1961a, 1961b)
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may be used to construct a linear unbiased estimator of the parameter

B. We will denote this estimator by 8. For finite sampling schemes

the regression design problem has been considered by Sacks and Ylvisaker (1966,

1968, 1970), Wahba (1971, 1974), and Eubank, Smith and Smith (1981a, 1981b).

In the context of model (1.1), a regression design is a set of non-coincident

points in [0,1]. The problem of design selection is, therefore, one of

choosing from among the members of the class of all n+2 point designs

D : [(tost I , ... t :0 =t O < tI ,t< .... <tn+ }

where :- means "is defined as".

It is assumed throughout this paper that it is possible to sample

not only the Y process but its derivatives as well. Given T c D , onen

can then consider the estimation of 8 by an estimator based on the

observation set

YkT= {Y(1)(t):t E T, i-O,..,k-l}
Yk,T ..

In particular, generalized least squares may be utilized to obtain the

best linear unbiased estimator (BLUE) of 6 using the observations YkT"

k,,TThis estimator will be denoted by 6 k,T"

An optimal n-point design for model (1.1) is a T*eD which satisfies

VCSk,T*) = inf V(Bk,T)
TcD

n

Problems pertaining to the existence of optimal designs can be handled

as in Sacks and Ylvisaker (1966). Sufficient conditions for the uniqueness

of optimal designs have been given by Wahba (1971) and Eubank, Smith and

Smith (1981a, 1981b) for certain types of covariance kernels.

Unfortunately, it will not always be possible to sample the deriva-

tives of the Y process. However, results regarding Bk,T are still useful

in this event since, as noted by Wahba (1971),

inf V(T ) < inf V(Ok,T) < inf V(S )
TD nk TED TED n
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where 8T is the BLUE of 8 obtained without the use of derivative information,

i.e., the generalized least squares estimator of 6 obtained from model (1.1)

using the observation set YT = {Y(t):t E T1. It should also be noted that,

for the process considered here, the work of Barrow and Smith (1978) has

the consequence that optimal designs for B are asymptotically optimal
k,T

for 8T* In addition, when k = 2 the optimal designs for 8kT are, under

certain conditions on f, precisely the optimal designs for T(c.f. Theorem 2.3

of Eubank, Smith and Smith (1981a) and Theorem 2.2 of Eubank, Smith and

Smith (1981b)). Of course in the important case of k=l considered by Sacks

and Ylvisaker (1966), 81,T = 8T and our work is also applicable to the

regression design problem in this instance.

In this paper we continue the work of Eubank, Smith and Smith (1981a,

1981b) by constructing an algorithm for the computation of optimal designs

for the case that R is the covariance kernel corresponding to a (k-l)-fold

multiple integral of a Brownian bridge or Brownian motion process or certain

generalizations of these processes. The case kl corresponds to the

Brownian bridge and Brownian motion covariance kernels and is of particular

importance. In fact, a model of the form (1.1) with X(.) a Brownian bridge

process has been shown by Parzen (1979) to arise in the estimation of a

location or scale parameter by linear combinations of order statistics.

It will be seen (Section 4) that our algorithm can be used, in conjunction

with the work of Eubank (1981), to obtain a unified framework for optimal

spacing selection for the quantiles utilized in the asymptotically best

linear unbiased estimator of a location or scale parameter.

In Section 2 we give some preliminary results regarding certain re-

lationships between the selection of designs for model (1.1) and the

approximation of functions by piecewise polynomials. Using these rela-

tionships it is possible to obtain an algorithm for optimal design

computation through the modification of work by Chow (1978) on piece-
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wise polynomial approximation with variable knots. The optimal design

algorithm is presented in Section 3 along with several illustrations

of its use. Its application to location or scale parameter estimation

is discussed in Section 4. Section 5 contains a short summary.

2. OPTIMAL DESIGNS AND PIECEWISE POLYNOMIAL APPROXIMATION

The covariance kernel,R, for the process (1.1) is the reproducing

kernel for a reproducing kernel Hilbert space (RKHS) which will be denoted

as H(R) (c.f. Parzen (1961a, 1961b). The problem of optimal design selection

for the estimator ak,T may be formulated as a minimum norm approximation

problem in H(R) in the following manner. Let 1. IIR denote the norm in

H(R) and define

S k,T span(R(0 'J)(',t): t E T,j = Oi,...k.k,-l

where
i+j

R (i, .: . a R(5,t)

The orthogonal projector (with respect to I[IR, Pk,T , which maps H(R)

onto Sk,T has been shown by Sacks and Ylvisaker (1970) to satisfy

kTkT

As Pk,T is an orthogonal projection, we have

11 f fH l - k,T'fl2 (2.2)lk,T rl R R , R

From (2.1) and (2.2) it follows that T* is an optimal design if and only

if

Hlf - Pk,T*fHlR " inf lf - P k,TfER (2.3)
TeD

n

Thus we see that the optimal design problem is equivalent to the non-

linear best approximation problem: Find T*cD n such that s*:=P k,Tf

n ,T
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satisfies

IIf-s*{IR "nf inf H1f-slIR.
TeDn S k,T

In order to study this problem more closely we now restrict our

attention to a specific class of X processes and their corresponding

covariance kernels. Let

1 s-uk-ltuk-i us
K(s,t):= f ... u+\tu/4. du , 0 < s, t < 1, (2.4)

0 (k-l)! 2

where (x) r x for x > 0 and is 0 otherwise, and let U(.) denote

the corresponding normal process, i.e., a(k-l)-fold multiple integral

of Brownian motion. Define a new process, W, by

U(t)-E[U(t)IUQ) (1), J=k-q,...,k-l1, 0 < q < k
W(t) - (2.5)

IU(t) ,q = 0.

It will be assumed in subsequent discussions that R is the covariance

kernel defined by

R(s,t): - Cov(W(s), W(t)). (2.6)

When q - 1, R is the covariance kernel corresponding to a (k-l)-fold

multiple integral of a Brownian bridge process whereas the case of q-0

reverts to the covariance kernel (2.4) for a multiple integral of Brownian

motion. The case of q-k was considered by Eubank, Smith and Smith (1981a).

For processes with covariance kernels of the form (2.6), it is known

that (c.f. Eubank, Smith and Smith (1981a, 1981b)),

i) H(R) is a Hilbert function space consisting of functions which

satisfy for fEH(R),

f(j) absolutely continuous, J0,....,k-l, with f(k)e L2 [0,1],

and boundary conditions

f(i)(o)=o, j-o,...,k- f
Q() (1)-O, J-k-q, .... k-l, for 0 < q <k,
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or just fQ) (0) - 0, J=O,... ,k-l, for q - 0. The norm for feH(R) is

Ilf!! R  Ilf(k)HI 2 ffl(f(k)()) 2dx}1 /2  (2.7)
L 0

ii) When q = k, observations at 0 or 1 provide no information

regarding the parameter 8 (this follows from property i) since, in this case,

f(J)(0) - f(J)( 1) = 0, j - 0,..., k-l). Therefore, only design points

in the interior of [0,1] are utilized when estimating S. This convention

has the consequence that the designs to be selected here agree with those con-

sidered by Eubank, Smith and Smith (1981a). We note in passing that

similar remarks about observation selection hold for other values of q

(c.f. Sacks and Ylvisaker (1966) for the case of k-1, q=0).

iii) R(s,t), as a function of s for fixed t, is a spline of order 2k

in continuity class C2k - 2 with a knot at t.

iv) For T=(t0, t I ....tn+l )ED, the best L 2[0,1] approximation to f(k)

from P kT), the set of piecewise polytiomials of order k with breakpoints

at ti , .... tn' is (Pk,T f )

Let Q,T denote the L 2[0,1] orthogonal projector for P k(T). Then,

equation (2.7) and result iv) have the consequence that

1 f(k) (P f k) 1  fk)_k f(k)It
If-PkTIR If kT L 2=1Il -,T 2

and, hence,

infIlf-PkTfIIR - infllf (k) -Qf(k)l 2
TeD TeD L

n n

Therefore, in view of (2.3), the optimal design problem for the types

of Y processes considered here coincides with finding the breakpoints

2 (k)of the best L [0,1] piecewise polynomial approximation to f

Approximation by piecewise polynomials with free breakpoints has

been studied by Barrow, et al (1978), Barrow and Smith (1978), and Chow
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(1978). Their results, restated in the design setting, yield this

partial characterization of optimal designs for covariance kernels

of the form (2.6).

Theorem 1. Let T* Dt*) D be an optimal design. If

2k (kf c H(R)kC [0,13 and f(2k)> 0 on [0,1] then, for i = 1,...,n,

P(k) (tf-) , ) (k) (t*+) k even

kT* 1(2.8)
2f(k)(t*) - (P f)(k)(t*+), k odd

i k,T*

Sometimes the necessary condition (2.8) is also sufficient to

guarantee an optimal design. We state such a result from Eubank, Smith

and Smith (1981a, 1981b).

Theorem 2. Let f E H(R) r) C2k [0,1 with f(2k) > 0 on [0,1] and log f(2k)

concave on (0,1), then 8kT has a unique optimal design for each n.

In general uniqueness is quite difficult to prove. At present, very

few other positive results concerning uniqueness are available.

3. AN ALGORITHM FOR COMPUTING OPTIMAL DESIGNS

Theorem 1 suggests that we should find a design T - (to,...,tn+I

for which Fi(T) - 0, i - 1,...,n, where

F (Pk,Tf) (k)(ti+) - (Pk,Tf)(k)(ti-) k evenFi(T) = (3.1)

2f (k)(ti) - (Pk,T f)(k)(ti-) - (Pk,Tf)(k)(ti+), k odd.

Thus, setting F(T) = (F1(T),...,Fn(T))t , we see that we are looking for a

zero of the vector valued function F. Such zeros will be candidates for
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optimal designs. Chow (1978) has shown that

Ct - )kC(T) i ii f(l- )k-l kf(2k)[t + (ti-ti l ) ]dr
(k-i) ! 0

(3.2)
(t k1(i+l-i1 f (1-T) k Tk-l f(2k ) [ti+T(tilt i ) ]dT,

(k-l) ! 0 l

i i l..n,

where,recall t 0:=0 and t n+l:=l. Consequently, the Jacobian matrix of F at T,

A(T): -T -. - (T] , is tridiagonal with non-zero elements given by

aFi k(ti i-i )  k-l
f -1) kkt - k f(2k) [tii+ T (ti-tii)]dT, (3.3)

ati I  (k-i)! 01( 1 )kk1lf

2<i<n,

aFi (ti i-i)k-1 fl k-2k (2k)
(ki! f(1-T) T (kT-l)f [t i+T(ti tii)1dT

(k-)! 0

+ (ti+l- t i)l 1 k-2()
(kl) f(1-T)k T-(k(l-- )-l)f2k [t'i+T(ti+l-ti)]dT , (3.4)

1<i<n,

and

3F i  k(t i+l- ti ) k - I _ l k(k
_ti+ I  = - (k-i) f (1 -TkIT kf(2k) [t + r(t -ti)] (3.5)

(k-i)! 0 1 i+l

I < i <n- i .

When f is 2k times continuously differentiable and f (2k) > 0 we
can use Newton's method to find a T*ED which is a zero of F. Such a

n

T* will be an optimal design candidate and may be constructed using the

algorithm presented below. If, in addition, f satisfied the conditions

of Theorem 2, then the T* located by the algorithm will be the optimal

design.
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Algorithm:

Step 1. Select an initial T = (t0,.. .,tn+l).

Step 2. Check to insure that TED nn

Step 3. Compute F(T) and A(T).

Step 4. Compute b = A(T)- IF(T).

Step 5. Stop if b is small or the maximum number of iterations

has been met.

Step 6. Set ti = ti - bi , i=l,...,n, and return to Step 2.

As was indicated above, the algorithm (when it converges) finds a

design T* which satisfies a necessary condition for design optimality.

In order to enhance our chances of finding a "good" design, care should

be taken in Step 1. An initial design choice which usually yields good

results is the nth element of an asymptotically optimal design sequence

(c.f. Sacks and Ylvisaker (1966)). Such a sequence can be constructed

using the density 2/2k+l 2/2k+i (3.6)

h(x) = If(2k)(X fIf(2k)l (,
0

in the following manner. Let H denote the distribution function corre-

sponding to h with associated inverse (or quantile) function H Then

it can be shown (c.f. Eubank, Smith and Smith (1981a, 1981b) and/or Sacks

and Ylvisaker (1966, 1970))that the nth element of an asymptotically

optimal design sequence for 8 consists of the points
k,T

ti  H(n) i - 0...,n+l (3.7)

The design sequence {TnI obtained by solving (3.7) for successive
n n1l

values of n is asymptotically optimal in the sense that

V(k,T n)-V(B)

lim n -i. (3.8)
inf V(Bk) - V(O)

TED n



10

Although this relationship between optimal and asymptotically optimal

designs pertains to large n, it is often the case (as will be discussed

in the examples) that the asymptotics carry over to small n at least to

the extent that the values of asymptotically optimal designs provide a

good indication of the locations of the optimal design points.

In some cases H- has a closed form making asymptotically optimal

designs easy to compute. However, even when this is not the case, H

can be readily evaluated through numeric tabulation of H and subsequent

interpolation.

If after one or more iterations the check in Step 2 fails, this

indicates that the algorithm has moved out of the feasible region, D nn

Such an occurance is usually indicative of a poor choice for an initial

design. In this event one alternative, of course, is to simply reinitialize

with another design and try again. Alternatively, one might reduce the size

of the step taken in Step 6, i.e., take

t. = t. - ab. (3.9)1 1 1

for some O<a<l. More generally, a modified version of the algorithm could

be utilized, where for instance, after the ith iteration the new design

points are taken as
t. = t a bit j 1,.. i n, (3.10)

for some 0<<l where 0<6.<l is the largest value such that the resulting design

remains in D . We have not tested this last modification since it would only
n

reduce convergence time and since, for all the problems we have considered,

convergence has always occurred (in terms of a relative change in the design

-11points between successive interations of less than 10 - ) after only 4 to

7 interations using an asymptotically optimal initial design.

The integrals computed in Step 3 of the algorithm will usually require

evaluation by numerical methods. This can be readily accomplished through

the use of a Gaussian quadrature rule.



We conclude this section by presenting several examples which

illustrate the use of the algorithm and Theorems 1 and 2 in the

computation of optimal designs. For simplicity the X process implicit

in each of the following examples is taken to have covariance kernel

(2.4). When exhibiting a particular design we present only those

values which are in the interior of [0,1].

Example 1. Consider first the case of

1 6 f~t) = .v t(3.11)

This regression function furnishes an example of a function which

satisfies the conditions of Theorems 1 and 2 and, hence, in this case

for k=1,2,3 we are assured of unique optimal designs for all values of

n. In addition, through the use of this function it will be possible

to examine instances when the use of uniformly spaced design points,

either for estimation or for initialization of the algorithm, is a

sound strategy as well as cases when it is not. We now consider the

construction and properties of various designs for this regression

model.

In computing optimal designs for this model asymptotically optimal

designs were utilized as starting values. For a regression function

having the form (3.11) the asymptotically optimal designs are simple to

compute since the H-I function is given by

x 3/11 when k - 1,

(x) x 5/9 when k - 2,

x when k 3.

It is important to note that for k 3 the asymptotically optimal designs

consists of uniformly spaced design points. These are, in fact, seen to
1 6

be the optimal designs. Therefore, in the case of f(t) t 6 with

|6



12

k - 3 sampling the Y process at uniform intervals is not only sound but an

optimal strategy. This is not the case, however, for k I 1 and 2.

The optimal designs of size n - 1,3,5,10,20 for this regression model

were computed for k = 1,2,3. The variances of 8kT corresponding to

these designs are presented in Table 1 along with, for comparison

purposes, the variances obtained through the use of asymptotically

optimal and uniform designs. These values may be compared, from a

regret point of view, with the values of V() - 1f(k)11- 2 provided at

the bottom of the table.

Examination of Table 1 reveals that, as one might suspect, the sub-

stantive gains from the use of optimal (as opposed to asymptotically

optimal) designs occur for small n and/or k. Asymptotically optimal

designs perform quite well in this case even for relatively small n over

all values of k. In contrast, for k -1 uniformly spaced design points

tend to perform poorly, relative to optimal or asymptotically optimal

designs, especially for small n. The use of uniform designs would seem

acceptable for large n when k - 2 and, of course, the uniform, asymp-

totically optimal and optimal designs all agree when k = 3.

Through the use of asymptotically optimal designs to initialize

the algorithm it was possible to obtain convergence to the optimal designs,

in every instance, in 5 or fewer iterations. However, when uniformly

spaced design points were tried as starting values, this resulted in a

failure of the check in Step 2 of the algorithm for n > 10 when k - 2

and even for n as small as 3 when k - 1. In the instance of k - 2 it

was found that by taking a step of size 6 - .29 in (3.9) convergence (to

the extent of 5 digit accuracy) could be obtained after 41 iterations

(values of 6 > .3 were all apparently to large to provide similar results).

K
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No such value of 6 could be found when k = 1. Keeping in mind the

criterion (2.8) that is utilized for locating an "optimal" design

point, this latter fact comes as no surprise when one compares, for

instance, the uniform 3 point design (.25, .5, .75) with the optimal

design (.65828, .81674, .92042) for this case.

Example 2. As an example of a regression function which is not a

polynomial we now suppose f has the form

8 t7/2f(t)- = -

where the factor 8/105 is introduced to simplify subsequent numerical

presentations. Both Theorems 1 and 2 are applicable to this function

when k = 1 but not when k - 2 or 3 as, in these latter cases, f(2k) is

not in C[O,1]. Consequently, this will provide an illustration of the

performance of the algorithm under conditions other than those of

Theorem I or the ideal conditions of Theorem 2.

As in the previous example the H function has a closed form. In

this case

x 1/2 when k - 1,

H 1 W x /4  when k - 2,

x 7/2 when k - 3.

The variances of ak,T corresponding to optimal, asymptotically optimal

and uniformly spaced designs of size n-1,3,5,10,20 are presented in Table 2

for k - 1,2,3. As in the previous example, optimal designs were computed

using asymptotically optimal starting values. In all instances convergence

occurred after at most 7 iterations. Examinations of the values in Table 1

lead, again, to the conclusion that the use of optimal designs (rather

than asymptotically optimal designs) will be of the most value when

n is small. It should be remembered, however, that in contrast to

L



* ~ 15

m. 00 00 00 00

c rt kA 00 10

-J0 0' cohi (
%0J %. 0 %0 %C0

'.j >j co .. l N~~~14 41 kn0 a ' J 9~

m- -0 .-

El 00 NJ 0D)

030

O'. 0 0 0.0 00 '.D 0
0n 0% 0 0 tiCI

07 0 0Q 00

10 .0 \0 .o

'0 '0 '0 CD 0 '.0 r

C* 0 D 0 41 00'.l rtr

C) 0 w -3 1 -

'0 %. .0 '0 \D 0
0~ ~ 0 c0

0

CNm NJN J J IO
NJ *- * *

0 0 0 0 I0t

0M 0"0a

tvI



16

the results presented in Table 1, those given in Table 2 were obtained,

for k - 2,3, when Theorem 1 is not applicable. This suggests that the

algorithm may still perform well under moderate departures from the

assumptions upon which it is based.

Example 3. Finally consider the case of f having the form

1 8 18~ 17 (.2f(t) = (t - () + 8 (i)7t. (3.12)

This regression function provides an example of optimal design duplicity

as well as an illustration of the sensitivity some functions exhibit

regarding the selection of an initial design.

Using n-l with k-2 one finds that V(B2, T) has a local maximum

(rather than minimum) at T*-{.5} with V(82 ,) - .74681. There are

1 2.
two optimal designs T = {.23079} and T - {.76921} where V(82,T) -

V(82,T
2) - .72007. Choices of starting values such as .6 or .4 lead

to convergence to T* whereas, for instance, the choices .2 and .8

results in convergence to T and T2 respectively. It should be noted

that T* is also the uniform and asymptotically optimal design for this

case. We therefore have an instance when the use of either uniform or

asymptotically optimal, in lieu of optimal, designs is not only poor,

but in fact, the worst strategy.

The function (3.12) has also been considered in Bock (1976) where

the graph of Ilf-P2,TflI R versus t1 is seen to have a "W-shape". Although

there is little difference, in this case, between the variance at the

local maximum and at the two minimums, it is clear that functions may be

constructed for which this difference is arbitrarily large.

In the examples we have considered only regression functions for

which the H-  function has a closed form. This has been for the sake

L
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of illustration and has the consequence that the asymptotically optimal

designs perform better, for estimation purposes, than might otherwise

be the case. Unfortunately, situations where H - is of a closed form

are rare in practice. The reader is refered to Eubank (1979) for

-1several examples of the evaluation of H by numerical methods.

All the computations in this and subsequent sections were per-

formed on either the IBM 360 computer at Arizona State University or

the CDC 6600 at Southern Methodist University.

4. APPLICATION TO LOCATION OR SCALE PARAMETER ESTIMATION

Suppose a random sample, Zl,...,Z N is obtained from a distribution

of the form F(z) - F (z/8), where F is a known distributional form and
0 0

B is an unknown scale parameter. F0 is assumed to be absolutely continuous

with associated probability density function fo" Let Qo(t):.Fo1 (t) and

define the density-quantile function as d0 (t):-fO(Q0 (t)), 0 < t < 1. The
-i< t <I .',.N

sample quantile function is defined by Q(t) - Z() ,  t

where Z Q) denotes the jth sample order statistic.

Parzen (1979) has shown that, for N sufficiently large, a model for

scale parameter estimation is

d0 (t)Q(t) - d o(t)Qo(t) + aX(t), t E [0,1], (4.1)

where a - BI/4 and X(.) is a Brownian bridge process. Eubank (1981) has

shown that the problem of optimal design selection for model (4.1) is

identical to the problem of selecting an optimal spacing for the sample

quantiles utilized in constructing the asymptotically best linear unbiased

estimator (ABLUE) of 8(c.f. Sarhan and Greenberg (1962) for discussions

and examples of the more classical approach to the optimal spacing problem).
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Given a design TeD (classically refered to as a spacing in the con-
n

text of this problem) the ABLUE of 8,sT s is, in fact, the corresponding

generalized least squares estimator of 8 formed from model (4.1). Since,

for a Brownian bridge process, k-q, it follows from property ii) in Section 2

that only those observations which correspond to the design points,tl,...tn,

in the interior of [0,1] are used for estimation. Thus, 8T is of the form
n
E c(t i)d 0(ti )Q(ti) where explicit expressions for the c(t i) can be found
i-i
in Sarhan and Greenberg (1962). The optimal spacing problem consists

of finding a spacing (design) for which the variance of 8T is a minimum

or, equivalently,

ARE(8T) = V(S)/ClVT), (4.2)

the relative efficiency of 8T with respect to 8, is a maximum. Equation

(4.2) can be shown to provide the asymptotic (as N + ®) relative efficiency

of the ABLUE with respect to the maximum likelihood estimator of 8 (c.f.

Eubank (1981)) which indicates the reason underlying the use of the ARE

notation.

Upon examination of (4.1) there may appear to be a disparity between

this model and the regression model (1.1) (and, consequently, between the

optimal spacing and optimal design problems) due to the factor a which

appears in (4.1). The presence of this term implies that the variance

of 8T is not lIPI TdolI; 2 as in (2.1) but rathe: a211P ,Td R 2 . Hever,
2
a , although unknown, is independent of T. Consequently, to minimize

the variance of 8T it suffices to minimize IPlTdOII 2 and the optimal

spacing problem is therefore equivalent to the optimal design problem

discussed in the previous two sections.

At present the literature on optimal spacings, is composed of



19

numerous articles cataloging the optimal spacings for various distribu-

tion types (c.f. Eubank (1981)) for a list of references). Thus the

classical approach to the optimal spacing problem has been to consider

each distribution separately. As the Brownian bridge process corresponds

to the special case of k and q both equal to 1 it now follows that the

algorithm presented in the previous section may also be used for the

computation of optimal spacings. Two important consequences of this

fact are:

(i) model (4.1) in conjunction with Theorems 1 and 2 and the

algorithm of Section 3 provide the first simple, unified

framework for the computation of optimal spacings.

(ii) through reference to the optimal spacing literature, comparisons

may be made between designs (spacings) obtained from the

algorithm and those computed by other authors using the classical

approach which involves a search using global optimization for

each distribution.

It is important to note that due to the particular characteristics of a

distribution it is sometimes possible to show uniqueness for optimal

spacings when Theorem 2 is not applicable. Such results may be helpful

in providing an indication of how our algorithm will perform under non-

ideal conditions. We illustrate this and the other comments with an

example.

Let F0 be the distribution function for the Pareto distribution,

i.e.,

F0 (x)1- ( + x) -  x, v > O.

In this case V+l

dot)Qot 0 W [(-t) -(1-t) ] (4.3)
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TABLE 3. OPTIMAL SPACINGS DESIGNS FOR THE PARETO, v = .5,2, k 1 1

n 1 3 7

v = .5 v- =2 v = .5 v - 2 v .5 v 2

t .35961 .61809 .16295 .34049 .07805 .17865

t2  .35048 .63042 .16078 .34519

t3  .58405 .85886 .24934 .49868

t4  .34549 .63789

t5  .45215 .76118

t6  .57488 .86617

t7 .72776 .94889

ARE(a ) .77461 .72136 .94657 .92597 .98700 .98088
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and
1-V

[do(t)Qo(t)]" = -(1 + 1) (1-t)-- (4.4)

Theorem 2 is therefore applicable and insures a unique optimal design

when v < 1. The unique optimal spacings for v - .5 obtained from the

algorithm with n - 1,3,7 are presented in Table 3 and agree with those

obtained by Kulldorf and Vannman (1973) using global optimization methods.

Also given in Table 3 are the results obtained from the algorithm when

v = 2. Even though neither Theorem 1 nor 2 applies it is still true

(c.f. Kulldorf and Vannman (1973)) that the optimal spacings for the

Pareto are unique in this case as well. The fact that the spacings

computed by the algorithm agree with the optimal spacings for v - 2

given by Kulldorf and Vannman (1973) is an important illustration of

the fact that unique optimal designs exist for a wider class of functions

than those satisfying the hypotheses of Theorems 1 and 2 and, in such

instances, may be computed with this algorithm.

If, instead of scale parameter estimation, location parameter

estimation is of interest, the distribution function has the form

F(z) = F0 (z - a). A model similar to (4.1) holds in this case as well.

To obtain an algorithm for optimal spacing computation in this instance

it is only necessary to interchange the roles of d0 and do*Q0 in the

previous discussion.

The example presented in this section illustrates how the algorithm

presented in Section 3 may be used for optimal spacing computation, and,

in addition, provides an indication of how it performs under departures

from the "ideal conditions" of Theorems I or 2. For these reasons it

has been useful to consider a situation where the optimal spacings had
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been obtained by other methods and were, therefore, available for com-

parison purposes. However, the value of this algorithm to the practitioner

will lie in its use for the computation of the optimal spacings in situations

which have not been considered in the literature and for which existing

results are not available. It is our belief, based on comparison with

the classical results, that this algorithm will be a valuable tool for

this purpose even under moderate departures from the conditions of

Theorems 1 or 2. We also conjecture that, since the algorithm is based

on the local behaviour of the d(or d-Q) function near an optimal spacing

element, optimal spacings can be obtained more rapidly and efficiently

through the use of this method rather than an ad hoc global optimization

technique. Unfortunately, the computational aspects of optimal spacing

construction are typically not reported in the literature on the subject

and consequently, it is difficult to obtain comparisons which support

this contention.

5. SUMMARY AND DISCUSSION

In this paper an algorithm has been presented for the computation of

optimal designs for certain time series models. This algorithm locates

a design which satisfies a necessary condition for optimality provided

f(2k) is continuous and of one sign on [0,I]. If in addition, log f(2k)

is concave on (0,1) the use of this algorithm should provide the optimal

design. The algorithm has also been shown to be useful in the selection

of order statistics for location or scale parameter estimation. The

advantage of this approach to spacing selection over classical techniques

is that it provides a unified approach to optimal spacing selection which

obviates the need for global optimization.
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Experience with this algorithm indicates that it works rather well

even when the conditions of Theorem 1 are only approximately satisfied

(e.g., Example 2 of Section 3 and the case of v = 2 in Section 4). However,

it may be more sensitive in such cases to the choice of initial designs.

While uniformly spaced starting values are easily input and may produce

the optimal design, they can also give poor or misleading results. Generally,

better results may be obtained by initializing with an asymptotically optimal

design, and, consequently, this method is recommended even though one must

-Ibegin by evaluating the function H as in (3.7).
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